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ABSTRACT

.......... , Laplacian Smoothing Splines (LSS) are presented as generalizations of

graduation, cubic and thin plate splines. The method of generalized cross

validation (GCV) to choose the smoothing parameter is described. GCV is used

in the algorithm for the computation of LSS's. An outline of a computer

program which implements this algorithm is presented along with a description

of the use of the program. Examples in one, two and three dimensions

demonstrate how to obtain estimates of function values with confidence

intervals and estimates of first and second derivatives. Probability plots

are used as a diagnostic tool to check for model inadequacy. .
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1. Motivation

A Laplacian smoothing spline (LSS) is a statistical tool used to model a

smooth but otherwise unknown function. The fitted spline provides an analytic

function which may be utilized to estimate derivatives, integrals or values of

the underlying function. For data analysis purposes a graphical display of

the fitted spline (or cross sections for multidimensional problems) often

provides insight which might otherwise remain masked by the irregularly

spaced, multidimensional and "noisy" data. The residuals, which are the

observed values of the dependent variable minus the corresponding fitted

spline values, may be utilized as an aid in model checking. A probability

plot of the residuals provides a vehicle to detect possibly discrepant

observations (outliers). With the above ideas as the eventual objective we

first elucidate the functional form of the LSS and then describe an algorithm

for its computation.

When someone mentions a line, cosine or an exponential we all have a

visual image of "feel" for the function in question. Using the following

example we hope to provide an intuitive feeling for an LSS.

In one dimension imagine a long, thin, perfectly rigid rod (a line) lying

on a frictionless plane with coordinate axes (t,z). We represent this rod as

a function of t, say g(t). Assume that we are given N points in the plane

{(t,z):(tz)-(ti,zi), t-1,...,N}. The ti are considered to be distinct and

known without error. The zt are measurements of a true but unknown function f

evaluated at tt plus some "noise" ei. The el are independent random

variables, each having mean zero and finite variance.

f1
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With the previous setup imagine that an ideal spring is attached to data

point (ti,zi) and to the rod (ti,g(ti)) for each i, i-l1,...,N. This fixes the

springs to remain parallel to the ordinate axis. What position will the rod

g(t) assume?

Physics provides a means to answer this question. The rod will assume

the position which minimizes the energy of the springs. The energy of an

ideal spring is equal to some positive constant ki (called the spring

constant) times the square of the length it is stretched. Thus the cumulative

energy of the N springs is

N
Z ki(zi - g(ti))•
i=I

This is minimized when g is the least squares line (provided we restrict g to

be rigid) therefore the least squares line is the position the rod will assume

if ki = ko, i=l,...,N, ko some constant. If the ki are not all equal then the

rod will assume the position of the weighted least squares line. Notice that

this spring idea provides an intuitive explanation for minimizing the residual

sum of squares in regression.

The situation is analogous in two dimensions: a thin plate of infinite

rigidity (not bendable) would assume the position of the least squares plane.

The situation in three dimensions, although not as easy to visualize, is

analogous. There are further restrictions on the ti which are rigorously

given in (2.6).

We have thus far assumed that the rod is rigid. This is not necessary

and may not be a good representation of the physical phenomenon under



consideration. So we relax the rigidity assumption and assume that the rod is

flexible. If zero energy were required to flex the rod then the minimum

energy position which the rod would assume is that of a function of

interpolation. Since the residuals are zero, this configuration has.zero

energy and thus is a minimum. By this explanation it is readily seen that the

function thus obtained is not unique. This anomaly will be alleviated by

requiring energy to flex the rod.

Consider the more realistic case where the rod is flexible and takes

energy to flex. The spring of a diving board is testimony to this. Note that

the bending energy of a rod is (p/o2)J2 (g), where p/a2 is a constant and

J2(g) -f[g(2)(x)]2dx . (1.1)

Therefore the bending energy is proportional to curvature which may be

measured as J2(g) in (1.1).

To find the position which the rod will assume under these conditions is

equivalent to finding the function g which will minimize the total energy of

the system

N
Z ki(z i - g(ti)) 2 + (p/02) J2(g) (1.2)
1-1

or equivalently the minimizer of

N
(1/N) Z o2ki(zt - g(ti)) 2 + (p/N)J2 (g) . (1.3)

t-1

The function from a certain class of functions, X, which minimizes (1.3)

can be shown to be a piecewise cubic spline. The function space X is
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rigorously defined in Wahba and Wendelberger (1980). Here X should be thought

of as a space of smooth functions which map Rd into R1. There is much

literature about cubic splines in one dimension. To this author's knowledge

the earliest work on LSS's is that of Schoenberg (1964); other important work

on splines is given in Craven and Wahba (1979), Duchon (1976), Prenter (1975),

and Reinsch (1967).

The one dimensional case generalizes to two dimensions. In two

dimensions the splines are called thin plate splines because of the analogy of

minimizing the energy of a thin plate of infinite extent. The earliest

suggested application of thin plate smoothing splines seems to have been by

Harder and Desmarais (1972). They suggested that spring forces may be applied

at the points of interpolation. This inspired the spring analogy given here.

This spring concept is equivalent to LSS's in either one or two dimensions

(with m=2 in (2.1)). Much recent work on LSS's has been done by Wahba (see

Wahba (1979) and the references cited there).

In two dimensions J2(g) becomes

4 02 (~2 g(X,2
J2 (g) = f f E -vJ21]2 dx1 dx2 . (1.4)

-- -a vO 3ixlv x22-v

J2(g) is proportional to the bending energy of a thin plate (under simplifying

assumptions); for details see Meinguet (1979). However, in two dimensions the

solution is no longer a piecewise cubic but rather takes the form

N
g(t) E CiTi2 ln(TI) + do + dlxj + d2x2 , (1.5)

where Ti is the Euclidean distance between t and ti, that is Tt2 - I-til2

, --



= (til - xi) 2 + (t1 2 - x2)2 ; tij is the jth component of ti, j-l,2,

t - (xl,x 2); ci' and dv are constants, i-l,...,N, v0,1,2.

To aid in understanding (1.5) the function T0
2 1n(To) is plotted in Figure

1.1 for to = (0,0) and x2 = 0. Rotation of this function around the

ordinate axis and centering at the point tt will produce the radially

symmetric function Ti21n(Ti). Using (1.5) an LSS is seen to be composed of a

linear combination of these radially symmetric functions plus a plane. The

plane has zero bending energy but generally does have nonzero spring energy.

Linear combinations of the radially symmetric functions can be forced to

interpolate the points and hence may have zero spring energy but generally

have nonzero bending energy. This tradeoff between bending and spring energy,

or smoothness and infidelity to the data (terminology of Wahba (1979)), leads

one to consider the minimization problem of Section 2 as a generalization of

these ideas. The one and two dimension examples with m-2 are special cases of

this generalization.

We see that the motivation for one and two dimensional LSS's is quite

simple (at least for m-2). Attach springs to the data points, constrain them

to lie perpendicular to the independent variable space Rd, then let the curve

or surface conform by simple bending to the minimum energy configuration.

The Laplaclan smoothing spline was suggested by Duchon (1976) as a

multidimensional generalization of the thin plate (or "plaques minces"), d-2,

interpolating spline. An LSS is also a multivariate generalization of the one

dimensional, d-1, "graduation" spline of Schoenberg (1964). Furthermore, the

"graduation" spline is a generalization of the familiar cubic smoothing
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spline. The terminology "Laplacian smoothing spline" was suggested by

Professor I. J. Schoenberg. An explanation for using the term "Laplacian" is

given in Wahba (1979).

I'
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2. Characterization

Let zi = f(ti) + ei, 1=l,...,N. The tieRd are known exactly. We assume

that the function f is smooth but otherwise unknown. By smooth It Is meant

that the function is well approximated by a function gcX; X is rigorously

defined in Wahba and Wendelberger (1980). X may be thought of as a space of

functions which-approximate well a large class of functions of which f is a

member. The ei are independent, zero mean and finite variance random

variables with varlance-covariance matrix a2DO2 = 2diag(ao2 ,...,aN2). Here

02 is an unknown constant. For example, if we know that all the variances are

equal then we may take 1.0 = a1
2 = ... = ON2 in what follows. The ai2 used

here are inversely proportional to the ki of Section 1, that is, ki = (aat) - .

The ai2 may be thought of as relative weights of the measurement errors el.

The zi are observed dependent variables in R
1 and the corresponding tt are

independent variables in Rd, i=1,...,N.

A Laplacian smoothing spline is the function g which is the solution to

the problem.

Find geX, X a suitable function space, such that

N'IIDa'(z-g)jl2 + (p/N)Jm(g) (2.1)

attains its minimum. Here define

z (zl,...,ZN ) T  gi - g(tj). IlD-'z(z-g)12

= (z-g)TD,-2 (z-g), Da-0  = diag(al-1,...,ON -1)

where superscript T means transpose throughout. Also,

am g(t)
Jm(g) " Z I...! [ ]2dxl,...dxd; (2.2)

VXl al'V!, ... ,Od,v!-ft -40 3xlt1'V,...,3xd~dIV
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t = (x1,...,xd)T; M' = (m di1 ); the a1,v, ...,ad,v are the M' unique

combinations of {0,1,...,m} such that al,v+...+ad,v - m.

In the case presented earlier with d-2 and m-2 we have M'=3 and

(aj,v,a2,v) takes on the M' unique values (1,1), (2,0) and (0,2). In this

case (2.2) reduces to (1.4).

The solution to the minimization problem is unique and given in (2.3).

N M
g(t) = Z ciem,dTi2m-d(lnTi)Ie(d) + E dvov(t) , (2.3)

i=1 v=l

where le is the indicator function of even integers, that is Ie(d)=l, for d

even and le(d)=O, for d odd;

(-l)d/2+l+m/(2 2m-lwd/2(m-l)!(m-d/2)!), d evenemd=(2.4)
6m'd = ~r(d/2-m)/(22Zmd/2(m-I)!), d odd

and Ov are the polynomials of total degree less than m,

Pl, Pdv

Ov(t) = Ov(x1,...,xd) = X1 ...Xd • (2.5)

Here the Ov are unique; Ply > 0, i=l,...,d and plv+...+Pdv < m, v=1,...,M,

M = . Define the M by d matrix P to have ith element pi,. Also,

2m-d > 0 and (2.6) holds.

M
E avov(ti) = 0, i=l,...,N implies av = 0, v-=,...,M . (2.6)

v=1

(Condition (2.6) requires that the matrix To of Section 5 step (ii) be of rank

M.) c (cl,...,cN)T and d (d1,...,dN )T are obtained by solving the linear

system

(K + pa2Do2)C + Td = z (2.7)
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and

TTc = 0. (2.8)

In (2.7) K is the N by N matrix with ijth element

em,d~ij 2m-d(ln(Tij))Ie(d). In (2.7) and (2.8) T is the N by M matrix with

ivth element ,(ti). In (2.7) D.2 is the N by N diagnal matrix with iith

entry 0i
2 . a2 is an unknown proportionality constant which along with p is

absorbed into A using NX = pa2 to yield (2.9) from (2.7).

(K + NAD.2)c + Td - z (2.9)

The approach of Harder and Desmarais (1972) provides us with a physical

interpretation of the parameters at least in the d=2 case. P=NXa"2 is the

plate "rigidity" which is a constant. The value of p depends on the material

and the thickness of the plate. The spring constant kj is equal to the

reciprocal of the variance or (aoj) - 2. The "load" at the jth point is

,j = pCj = (oj)-2 rj = kjrj, where rj is the unnormalized or unscaled residual

at that point; i.e., rj = zj - g(tj), j=1,...,N or r = z - Kc - Td.

For a discussion of a more general problem and the derivation of the

solution the reader is referred to Wahba and Wendelberger (1980). We note

here that if the ei are not independent but instead have positive definite

covariance matrix proportional to E then Da2 and Da-1 are everywhere replaced

by Z and the symmetric inverse square root E-11 2 to obtain the solution.

To this point we have assumed knowledge of the smoothness parameter X.

However it is generally unknown. Before describing a method to dynamically

choose X from the data at hand we provide an example to exhibit its influence

on the LSS.
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3. Example 1-Variation of the LSS with X, d=l.

A company which makes and repairs small computers wants to forecast the

number of service engineers that it will require over the next few years. To

do this requires, among other things, knowledge of the length of a servir

call. The length of a call is a function of the number of components within

the computer which must be repaired or replaced. The informatim, in Table 3.1

was collected on 24 service calls; the data are from Chatterjee and Price

(1977). We would like to fit a spline to the data in order to forecast the

length of a service call.

We fit a spline to the data using the algorithm given in Section 5. The

smoothness parameter, X, is dynamically chosen from the data using the method

of generalized cross validation (GCV). By showing the influence of A on the

LSS of this example we hope to provide a clearer understanding of the role of

GCV in choosing the smoothness parameter. The results of the following

sections will be easier to understand with this example in mind. Exactly what

the GCV choice of X is will be presented in Section 4.

Figure 3.1 shows a plot of the data and the corresponding spline for five

different values of X. Because there are only 24 observations of which only

17 have unique independent variables we should not be surprised if the GCV

estimate (to be described in Section 4) of X, which is a large sample result,

does not perform well. The confidence intervals are calculated using method

of Wahba (1981); the formula used for their computation is given in Example 2

of Section 6.
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TABLE 3.1

EXAMPLE 1 - REPAIR TIMES

Length of Calls Units Repaired
(Minutes) (Number)

23 1
29 2
49 3
64 4
74 4
87 5
96 6
97 6
109 7
119 8
149 9I 145 9
154 10
166 10
162 11
174 11
180 12
176 12
179 14
193 16
193 17
195 18
198 18
205 20
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Considering the brief explanation of the problem given here the GCV

choice of X, as used in Figure 3.1c, seems reasonable to use in predicting the

number of minutes spent. The GCV choice of I appears to be the most visually

pleasing and consistent with how we would expect the number of minutes spent

on a service call to be related to the number of computer components repaired.

(I
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4. Generalized Cross Validation

In the example of Section 3 the smoothing parameter X is unknown. To

determine an estimate of this parameter Craven and Wahba (1979) and Wahba and

Wold (1979) have suggested the use of generalized cross validation. A short

synopsis of the development of this method is given to enhance the

understanding of it.

The method of cross validation (presented here as related to LSS's) is

developed in response to the question: How well may one expect LSS's to

predict the true functional value g(t) at some point t?

Simple cross validation (SCV) suggests predicting the true functional

values of data different from that used in the analysis to assess this

predictive ability. In its simplest form this entails dividing the sample

into two pieces of similar size using one section for optimization and the

other for testing. In addition to this, in order to gain more information

from the data, the two pieces may be interchanged and the optimization and

testing performed on each.

SCV is alright if there is an ample supply of data so that halving or

doubling it has little effect on the quality of the estimator. To lessen this

effect Mosteller and Tukey (1968) propose single cross validation (ICV),

(called ordinary cross validation by Wahba (1979)), which is described

suitably by them as follows:

"Suppose that we set aside one individual case, optimize for what is

left, then test on the set-aside case. Repeating this for every case

squeezes the data almost dry. If we have to go through the full
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optimization calculation every time, the extra computation may be hard to

face. Occasionally, one can easily calculate, either exactly or to an

adequate approximation, what the effect of dropping a specific and very

small part of the data will be on the optimized result. This adjusted

optimized result can then be compared with the values for the omitted

individual. That is, we make one optimization for all the data, followed

by one repetition per case of a much simpler calculation, a calculation

of the effect of dropping each individual, followed by one test of that

individual. When practical, this approach is attractive."

To describe 1CV mathematically we require some notation. Let gX(J) be

the solution to the minimization of (2.1) with the jth point removed from the

analysis. Similarly, Da(J) is the N-i by N-i matrix composed of D. with Its

jth row and column removed. To "test on the set aside case" we require that

[(gX(J)(tj) zj)/Cj] 2 be small. "Repeating this for every case" and

averaging to yield an overall test gives
N

VmO(A) = (1/N) E [(gx(J)(tj) - zj)/aj] 2 . (4.1)
J-1

iCV uses the X which minimizes VmO(X).

To minimize VmO(X) directly is not a trivial computational matter. For

each proposed value of A a system of the form (2.8) and (2.9) (of order N+M-1

instead of N+M) must be solved for each of the N values left out of the

analysis. This entails solving a linear system of order N+M-1 N times! As

noted earlier "if we have to go through the full optimization calculation

every time, the extra computation may be hard to face." Following the Idea of

Mosteller and Tukey we seek a computational simplification for the minimizer

of VmO(X).
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The simplified form for 1CV was first noted by Craven and Wahba (1979)

and given in a slightly more general form in Wahba and Wendelberger (1980).

The ICV function may be written

N
VmO(X) - (1/N) Z C(gx(tj) - zj)/(oj(l-ajj(X)))]2 • (4.2)

J-1

ajj(X) is t" jth diagonal element of Am(x) which is defined by

\gxkti)
9X itN)

where gx is the solution of (2.1). Am(x) may be thought of as mapping the

vector z into the smoothed values.

IIn this form "we make one optimization for all the data" by calculating

gA then "followed by one repetition per case of a much simpler calculation, a

calculation of the effect of dropping each individual." Here find ajj(x) and

use (4.2).

Evaluation of this formulation of VmO(X) involves solving a linear system

of size N+M to find gx and one of size N to find ajj(A). This is a

considerable improvement over that of using (4.1) directly. Because of a

mathematical simplification the amount of computation needed to minimize

VmO(X) can be substantially reduced. From a practical point of view this

makes the use of cross validation very attractive.

When applying cross validation to problems other than LSS's this last

step of finding "what the effect of dropping a specific and very small part of

the data will be on the optimized result" is very important and should not be
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overlooked. In fact, this step often makes cross validation computationally

feasible whereas without this insight it may be impractical.

Finding the minimizer of VmO(X) requires its evaluation at different

values of X as determined by a search routine. Hence, although the

minimization is possible we need to repeatedly solve large linear systems with

the number of solution times being a function of the search routine employed.

In VmO(X) of (4.1) each deviation of gx(i)(ti) from the observed value zi

is treated symmetrically. This choice is arbitrary and is chosen for

simplicity. A more general approach is to weight each term of (4.1) or

equivalently (4.2) to yield

N
Vm(X) = (1/N) E Wi[(gx(ti) - zi)/(oi(1-aii(X)))]2 . (4.3)I i=1 "

Before a discussion of the choice of these weights the following definition is

needed.

Definition:

N
Rm(X) = E(I/N) Z [(f(ti) - gX(ti))/ai]l

i-1

is the expected weighted (by ai) mean squared error between the true function

(f) and the spline (gA) evaluated at the independent variables (ti). Here E

denotes mathematical expectation with respect to the error distribution of the

random errors as described in the model of Section 2.

If we want Rm(A) to be small then the generalized cross validation value

of X should be used as the smoothing parameter value. Using 1CV as motivation
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Craven and Wahba (1979) and Golub, Heath and Wahba (1979) have shown that the

X which minimizes Vm(X) with weights

N
Wi = (1-aii(X)) 2/(1-N- 1  ajj ))'

j=1

is an estimate of the X which minimizes Rm(X). Using these weights in (4.3)

gives the generalized cross validation function (GCVF)

N N
Vm(X) = (I/N) Z [(gX(ti)-zi)/(ai(1-N- 1 E ajj(x)))]2 . (4.4)

i=1 j=1

The minimizer of (4.4) is called the GCV estimate of X.

The GCVF can be rewritten as

Vm(X) = (1/N)lIDOo-(I - Am(X))zII2/((I/N)Tr(I-Am(X))) 2 ; (4.5)

where Tr is the trace.

Wahba (1981) has proposed

IeI2 = IIDO-(I-Am(X))zII 2/Tr(I-Am(X)) (4.6)

as an estimate of the error variance a2. This leads us to consider

dfe = Tr(I-Am(X)) as the degrees of freedom of error. Using these notions we

rewrite the GCVF as

Vm(X) = Nae2/dfe * (4.7)

The method of GCV may be viewed as minimizing the estimated error

variance per error degrees of freedom. This may further be thought of as a

form of parsimonious model selection.

° _ ~"T ... . .
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In the next section we see that the computation of Vm(X) is reduced to

essentially the singular value (or eigenvalue-elgenvector) decomposition of a

symmetric positive definite N-M by N-M matrix (M is usually a small integer).

The above decomposition makes it possible to form Vm(A) by simple scalar

operations for each value of X. Thus we have taken the ideas of Mosteller and

Tukey one step further. This algorithm is much simpler than the original

analysis at essentially the cost of a one time eigenvalue-eigenvector

decomposition; i.e., changing the dependent variable (but not the independent

variables) does not necessitate another spectral decomposition. Thus, many

data sets which have identical independent variables but different dependent

variables may be analyzed quite easily and inexpensively.

When using GCV with a small sample size we may run into problems. The

most frequent small sample problem with GCV is that X - 0 or X = - is chosen

when physical considerations dictate that it should not be. X = 0 implies

that we are interpolating the dependent variable. This should be done if the

true underlying rigidity p is zero. X equal to infinity implies that we are

fitting a polynomial of degree m-1 by least squares. This should be done if

either the variance is large (relative to the dependent variable) or if the

true underlying rigidity is infinite (i.e., the true model is a polynomial).

If it is clear from other considerations that the value of X chosen is not

indicative of the actual underlying mechanism then that particular value

should not be used and the model assumptions should be checked for

violations.

The choice of m can also be made by GCV, see Lucas (1978) and Wahba and

Wendelberger (1980).
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5. Algorithm

The user must supply N independent variables, tieRd, i=I,...,N, and their

corresponding dependent variables, zjcRd, i=l,...,N to compute the LSS at a

point teRd. Assume that the model described in Section 2 holds. In

particular, assume the independent variables ti are known without error and

the dependent variables zi consist of the true function value at ti, f(ti),

plus "noise," ei, zi - f(ti) + ei. The ei are independent with finite

variance a2ai2 , 02 an unknown constant.

To produce the coefficients c and d needed to evaluate the spline we

solve the linear system of equations

n(K + NA*Da 2)C + Td - z

and

TTc . 0

In this system A* is the optimal value of the smoothing parameter X as

determined by the generalized cross validation function. If X* is known then

the solution of the above linear system could be accomplished for relatively

large values of N. However, it is usually unknown and must be calculated in

order to solve the system of equations.

The method currently used to determine X* requires the solution of a

symmetric N-M dimensional eigenvalue-eigenvector problem. This is the current

computational barrier to solving problems with large numbers of observations.

The algorithm presented in Wahba and Wendelberger (1980) requires the

inversion of a matrix of order M and two eigenvalue-eigenvector decompositions

of symmetric matrices, one N by N and the other (positive definite)
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N-M by N-M. The algorithm presented here requires the solution of a

triangular system of order M, the QR-decomposition of an N by M matrix and the

singular value (or eigenvalue-eigenvector) decomposition of a symmetric

positive definite N-M by N-M matrix. This algorithm is faster and requires

fewer operations, primarily because of the replacement of one N by N

eigenvalue-eigenvector decomposition by the QR-decomposition of an N by M

matrix (M < N).

This algorithm provides for replicated points. A replicated point is one

for which there is more than one observation of the dependent variable for a

particular value of the independent variable. Let the total number of unique

(independent variable) points be NN and define No = N - M - NN. Then the

computational algorithm is as follows:

(i) Compute T. = DO-IT.

(ii) Perform the QR-decomposition described in Dongarra, et al., (1979), of

Ta.

Ta = (QI,Q2) x (RT,O)T .

(iii) Calculate B = Q2TDa-IKDa-
1 Q2

(iv) Decompose B = (UI,U 2 )DB,(Ul,U 2)T

using the singular value decomposition of B, as described by Golub

and Reinsch (1970) or using the spectral decomposition of B as

described by Smith, et al., (1976); where
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0 - diagonal matrix of the eigenvalues (bl) of B, which is of

dimension N-M by N-M,

D- diagonal matrix of the positive eigenvalues (bl) of B, which

is of dimension NN by NN,

U1 - the eigenvectors of the positive eigenvalues of B, which is of

dimension (N-M) by NN, and

U2 - the eigenvectors of the zero eigenvalues of B, which is of

dimension (N-M) by No .

(v) Form w UITQ2 TDa-Iz,

wT =(Wl...,WNN)

(vi) Obtain X* as the minimizer of

NN NN
Z [wi/(bj/N + A)]2/( Z (1/(bi/N+

i=1 1=1

X * and N-M a NN

NN

N[zTQ2Q2Tza _ wTw + X2 E (wii~tl/N+X))2]+ (5.1)

V(~) NNV( ) = (N-M-NN+x Z N(1/(bi/N+A)))2,

A *-and N-M * NN

N zjTQ2Q2Tz/(N-M)
2 , X. -

where zu = DO-z

L2
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(vii) Calculate

D-IQ2UlDB- IUTQ2TZo , A * 0

DO-Q2UI[(DB+NXI)-I]UITQ2TZO,

C-
0 < A <.and N-N -NN (5.2)

DO-1Q 2UI[(DB+NXI)'-(NX)-'I]UITQ2TZO

+(Nx)-lDO-lQ 2Q2Tza , 0 < X < - and N-M * NN

0

(viii) Solve the triangular system.

Rd QITDO-I(z - Kc) for d,

dT = (dl,...,dOM)•

An important aspect of this method is the relatively small cost of

reconstructing a new LSS using the identical independent variables while

changing only the dependent variables. To see this notice that the bulk of

the computational effort is in steps (i) through (iv) which do not require

knowledge of the dependent variables. These steps depend upon the independent

variables and Da. To construct a second LSS with the same independent

variables and identical Do we need only save the matrices U1, Do, DB, Q1, Q2

and R. With these matrices we perform steps (v) through (viii) to produce a

spline for another set of dependent variables, say z', with little additional

computational effort.

The fact that obtaining another spline from z' is easy requires further

consideration. It is made possible because of the necessity to minimize the
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GCVF. This minimization provides the mechanism to easily calculate c and d in

steps (vii) and (viii) of the algorithm. If A* was somehow known a priori

then we could go right ahead and solve the linear system (2.8) and (2.9) at a

much less one time cost. However, even with A* known, If we had many new data

sets z' then for some number of them It Indeed would be easier to do the

spectral decomposition once and for all.

Instead of saving U1 , Da, D8 , QI, Q2 and R we actually save Q2U1 , D0 , 08 ,

QlTDa-IK and the QR-decomposition of To to retrieve R, Q2Q2T and Q1. By using

these matrices we can perform steps (v) through (viii) quite Inexpensively.

The QR-decomposltion can be stored In the storage which has been allocated for

Ta plus M additional storage locations. QlTDa-K is retained so that it Is

unnecessary to reevaluate K.

ImV
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6. Example 2--Franke's Principal Test Function, d=2.

Example 2 is a Monte Carlo experiment to demonstrate the surface (d-2)

which may be obtained by using an LSS with GCV. The "principal test function"

of Franke (1979) is used as the true function f. This surface consists of two

Gaussian peaks and one Gaussian dip superimposed on a surface sloping towards

the first quadrant. The surface is defined by

f(x,y) = .75 exp -[[(9x-2)2 +(9y-2) 21]/4]

+ .75 exp -[[(9x+1) 2/ 49]+[(9y+1)/10]]

+ .50 exp -[[(9x-7) 2 +(9y-3) 2 ]/4]

- .20 exp -[(9x-4)
2 +(9y-7) 2]

A plot of the surface f is given in Figure 6.1.

The surface is reconstructed from 169 "noisy" observations on the grid

2j-1 2k-I
G = {tilti(-,----), i=13(j-1)+k; j,kut,...,13}

26 26

The "noisy" observations are

zi = f(tj) + ei with ei-N(O,a 2), ia1,...,169, y2=(.03)2.

The ei are generated by the pseudo random number generator RAENBR at the

Madison Academic Computing Center, MACC (1978). The LSS with m-2 and the

smoothing parameter chosen by GCV is plotted in Figure 6.2. The closeness of

fit can be qualitatively seen by overlaying Figure 6.2 on Figure 6.1.

For this example the calculated ae2=(.026)2, (using (4.6)), compares

favorably with the true o2=(.03)2. Using ae2 to obtain confidence intervals

for the true curve at the grid points G as in Wahba (1981) gives the 95%

confidence intervals

I -
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boso

FRANKE'S PRINCIPAL
TEST FUINCTION

Figure 6.1: Example 2--Franke's Principle Test Function
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0

SPLIN4E FIT
L169 POINTS WITH SIGMAR .03

Figure 6.2: Plot of the m - 2, GCV A., spline fit to Franke's Principal
Test Function from 169 "noisy" points with G a .03
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g%*(ti) ± 1.96Oe0i(aii(X*))1/2 , i-1,...,N.

Figure 6.3 gives the cross section along the grid showing the true curve,

spline fit, observation and 95% confidence interval at each point for each

value of xi, i=1,...,13.

The number of 95% confidence intervals which cover the true surface is

known because the true surface is known. For this example 162 or 95.9% of the

intervals cover the true surface. This is a favorable comparison since the

expected number is 161. This example was not chosen because of this agreement

but rather was the only one run by prior decision.

The example given here uses points on a grid only for clarity of display.

For other d=2 Monte Carlo results see Wahba and Wendelberger (1980). The

meteorological example given there uses irregularly spaced points.
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7. Example 3-Derivatives and Outliers, d=3.

Example 3 is a Monte Carlo experiment with d=3 and true function

f(xl,x2,x3)=(2R)-3/2 exp [(x1 +4x22+9x3 2 )/(-2)].

Contours of f, f' and f'' are given as the solid lines in Figures 7.4, 7.5 and

7.6.

Three hundred points ti, il=1,...,300 are taken from a uniform

distribution in R={(xlx 2 ,x3)j-2<xl<2, -1<x2<1, -2/3<x3<2/31. The true

function f is evaluated at each of the points ti and added to a Gaussian

pseudo random variable with standard deviation a=.0025 to yield observation

zi. The peak height of f is approximately .0634. o is roughly 4% of the peak

height and therefore these data have a "typical" noise level.

1, A value of m=4 was chosen for this example in order that the second

derivative of the spline could be used as an estimate of the second derivative

of f. If k is the order of the derivative desired then 2m-2k-d must be

positive. Here 2x4-2x2-3 I 1 > 0 and so the second derivative of the LSS will

be a good estimate of the second derivative of f; for details see Wahba and

Wendelberger (1980).

The estimate ae for this experiment is .0024 which agrees nicely with the

true value of .0025.

Contours of the true function and the fitted spline, gx*, are plotted in

Figure 7.4 for 4 values of x3. Because of the symmetry of the true surface it

was not plotted for negative values of x3. The true function and the fitted

spline are close to one another near the center of the region and this

closeness degrades as we approach the boundary in each of the three

directions.
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The contours of the derivatives of f and gX* with respect to xI, x2 and

x3 are given in Figures 7.5a, 7.5b and 7.5c, respectively. The contours of

the second derivatives of f and gX* with respect to xixi, x1x2, X1x3, X2x2,

x2x3 and x3x3 are given in Figures 7.6a, 7.6b, 7.6c, 7.6d, 7.6e, and 7.6f,

respectively. The same qualitiative behavior is displayed by these

derivatives as of the function with the degradation occurring relatively more

rapidly as the boundary is approached. Figure 7.6f which is (a2 )/( 3x3ax3) of

f and gj* displays a particularly good fit near the center of R.

LSS's may be utilized to detect outliers in multidimensional noisy data

provided that the model of Section 2 is (nearly) appropriate. The model

requires that the observations are unbiased, i.e., that Ez=f. The errors

should be additive and have a known relative error'structure, Do. For the

purpose of the outlier study here we shall further assume that each error ei

has a Gaussian distribution.

To what extent the assumption of normality may be relaxed in practice

requires further study. The smoothness assumption requires that f(t) is

a smooth function of t. This rules out "cliff" functions or those with

discontinuities. By using a probability plot of the residuals the example

discussed here, which satisfies the above requirements, will be used to

demonstrate an outlier detection method.

Data sets with outliers need to be constructed. To accomplish this

choose the two points of ti, i=1,...,300 which are nearest to and farthest

from the origin, which is the center of the data region. These two points are

tk = (-.056, -.032, -.042) and t1 = (1.985, -.879, -.325), respectively. To
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construct data sets Zks, let each element of Zks equal the corresponding

element of z except for the kth. The kth element is set equal to f(tk) sO,

a=.0025. Construct zls analogously except that the Ith element becomes

f(tl) + So.

With the data sets Zks and zls probability plots in Figures

7.7 and 7.8 were obtained with MINITAB, Ryan, Joiner and Ryan (1976). The

probability plot is constructed by ordering the residuals ri from smallest to

largest and plotting them against their corresponding normal scores. The ith

smallest normal score as used by MINITAB is the (i-3/8)/300.25 percentage

point of the normal or Gaussian distribution. If the error distribution that

is postulated in the model is the correct one, then the probability plot

should be nearly linear. In the data sets constructed here the error

distribution is not correct because the kth or lih point is biased and

contains no random component.

The numbers in Figures 7.7 and 7.8 indicate how many points are plotted

at that spot on the graph. An asterisk indicates one point and a plus sign

indicates that more than 9 points are overlapping. In Figures 7.7b, c and d

the outlier is identified as the point which is separate from the points which

form the line. As the assumption of unbiasedness is more strongly violated it

shows up more obviously in the plot.

Figures 7.8a-d demonstrate that this outlier detection scheme is not

invincible and should be used in conjunction with other diagnostic checks.

The point tI has very high leverage because it is on the boundary of the data

region. In linear regression this is analogous to the points at the extremes

( U
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Figure 7.7a: Residuals vs. normal scores for one outlier, f(tk) - 0o, at tk.
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Figure 7.7b: Resdluals vs. normal scores for one outlier, f(tk) - 6c, at tk.
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Figure 7,7d: Resdluals vs. normal scores for one outlier, f(tk) - ZOo, at tk.
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Figure 7.8b: Resdluals vs. normal scores for one outlier, f(tj) + 6a, at t1 .
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of the independent variable range which also have high leverage. Because of

this the residual at tl is not large and does not show up in the probability

plots of Figures 7.8a-d. The leverage at t1 is so large that it causes

another point, the one in the lower left, in Figure 7.8d to appear as

descrepant. The probability plot provides a technique to check model

assumptions. However, as demonstrated here, this technique should be used in

conjunction with other diagnostic checks and with a good understanding of the

pitfalls which may be encountered.

Another diagnostic check which may be employed here is to plot the

residuals, ri, against the distance from ti to tl. This is analogous to

plotting the residuals against the independent variable in simple linear

regression. If a nonrandom pattern is observed, such as serial correlation,

then we have evidence that some model assumption is being violated. In

practice, tl is unknown and hence it may be necessary to oo all possible

plots, 1=1,...,N.

If a scaling Dy had been used then the scaled residuals DO-ir would be

plotted instead of r.

The procedure described here is a diagnostic method by which some of the

model assumptions may be checked. Irregularly spaced multidimensional "noisy"

data easily mask outliers. This technique provides a means which may detect

these discrepant observations. It is presented here in the hope that it

becomes a routine method to check for model violations in an analysis which

uses LSS's.

The three dimensional results presented here are new and quite promising.

A quantitative measurement of the goodness of fit of the estimated spline and

its derivatives to the true function is given in Wendelberger (1981). Further

Monte Carlo experiments will be performed in 3 and more dimensions.

pI
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8. Running the program

To evaluate an LSS at any point, teRd involves the execution of two

computer programs. The first of these, called MAIN, produces the coefficients

of the spline. The second, called EVALUATE, produces the spline, gN,m,X(t).

If 2m-2k-d is positive EVALUATE may also be used to produce the first (k-1) or

second (k=2) derivative of gN,m,X. Depending upon the particular problem at

hand the user specifies different options to be exercised by the program.

These options will be explained card by card below. Card I will be

abbreviated Ci and the commands are summarized in Table 8.1 with an example

runstream given in Table 8.3.

Cl is used to specify whether or not the coefficient arrays c and d and

the matrices X and P used to reconstruct the spline are written to unit 13. X

contains the values of the independent variables and P contains the exponents

of the polynomials in (2.5), where P is rigorously defined.

To accomplish storing the spline in unit 13 C1 should have SS13 in

columns I through 4. If EVALUATE is not going to be run then the contents of

unit 13 will be unused. In this case C1 should be DONT.

Someone other than the casual user may require other arrays and matrices

which are also written to unit 13. See subroutine WRT13 in Wendelberger

(1981) for details on the arrays and matrices which are written to unit 13.

C2, to be described in the next paragraph, writes into unit 14. See

subroutines AWRT14 and BWRT14 to determine the specific values which are

written to unit 14.



56

TABLE 8.1

Input for MAIN

CARD POSSIBLE VALUES FORMAT

1 SS13, DONT A4

2 SM14, UM14, DONT A4

3 SR15, SP15, VL15, DONT A4

4 MGCV, USEL A4

4+ (A)(Insert if C2 is USEL.) E15.8

5 VARI, STAN, SAME (Omit if C2 is UM14.) A4

6 (d,N,m) (Omit if C2 is UM14.) 315

7 Format of cards C8+1,...,CB+N. 18A4

8+1 (z1 , tlT, al or 012)

* (zj) (If C2 Is not UM14.)

* (zt, ttT, ot or at2) (If CS Is STAN or VARI.)

. Format is provided on C7. (See C7)

8+N (ZN. tNT, ON or ON2)

9 YES, NO A4

r
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C2 provides the ability to store certain matrices in unit 14 by using

SM14 in columns 1 through 4. The storage of these matrices makes it

unnecessary to perform the bulk of the computations if a second analysis is to

be performed. However, only the dependent variables may be changed for such a

subsequent analysis. The relative variances or standard deviations must be

identical to the run which used SM14 on C2.

UM14 in the first four columns of C2 provides for use of the matrices

which have previously been stored in unit 14. If the value of C2 is DONT then

the matrices are neither stored nor used.

C3 provides a means to retrieve certain information during the execution

of MAIN and to store this information in unit 15. The first four columns of

F C3 must be SR15, SP15. VL15 or DONT. If C3 is SR15 the residuals

r - (z-gN,m,x(t)) are stored in unit 15 with the format (G24.18). If C3 is

SP15 the ordinate and abcissa for each point of the plot of the GCVF as given

in the output are stored. First the number (n) of pairs is stored in 15

format followed by the ordered pairs (i,ln(V(loai+b))), where I is an index

number i=l,...,n and In is the natural logarithm; the format used is

(13,G24.18). If C3 is VL15 then bt/N, i.1,...,N-M with format (G24.18)

followed by w with with the same format are stored. If none of the above

are to be stored then C3 should be DONT.

The value of M(4CV on C4 causes the GCVF to be minimized to determine A*.

If the user wants to supply a value of A then the value of C4 should be USEL.

In that case C4+ is used. C4+ should contain the value of A in (E15.8) format

to be stored in a single precision variable. If C4 is MGCV then C4+ should

not be Included in the input stream.
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C5 is not used if the value of C2 is UJ14. Otherwise CS is used to input

relative variances or relative standard deviations or neither of these for the

errors of the dependent variable. If the relative variances are to be read

then C5 should be VARI; if the relative standard deviations are read then C5

Is STAN; and if neither is read then C5 is SANE. The value SANE is equivalent

to that of entering all l's as the relative variances. However, if SAME is

used then the program circumvents both multiplication and division by I since

00 is simply the identity matrix.

C6 is not used if C2 is UM14. Otherwise C6 reads in the number of

independent variables (= dimension), the number of observations N and the

value of m to be used. The format used Is (315).

C7 contains the format to be used to read in the data values. The format

should require at most 72 spaces including the left- and right-most

parentheses.

The data follow in C8+1 through C8+N. The data should be real Fortran

variables, each data line should contain, in order, the dependent variable,

the independent variable(s) and the relative variance or standard deviation if

used. If C2 is UM14 then C8+1 through C8+N should contain only the dependent

variables. They should be given in the identical sequence as the dependent

and independent variable(s) were when C2 had the value SM14.

The last card to be read is C9. It should contain one of the values YES

or NO . If YES then experimental confidence intervals are provided along

with degrees of freedom and an estimate of the variance (Wahba, (1981)). If

NO then these values are neither computed nor printed.

V U
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To evaluate the spline (k - 0), first derivative (k - 1) or second

derivative (k - 2) the program EVALUATE is used. Previous to running EVALUATE

the program MAIN must have been run with C1 writing the coefficients to unit

13 (Cl must have been SS13). EVALUATE will then read the matrices from unit

13 and calculate the spline, its first derivative or second derivative. The

kth derivative (k - 1 or k = 2) will be calculated only if 2m-2k-d is greater

than 0. A description of the input stream for EVALUATE is given In Table

8.2 with a sample runstream given in Table 8.3.

C1 contains two integer values in (215) format. The first Integer, N',

specifies the number of points teRd at which the function is to be evaluated.

The second integer should be one of 0, 1 or 2 depending upon whether the

spline, first or secL..d derivative, respectively, is to be calculated.

The second card contains the format to be used to read in the N' points.

The format should require at most 72 spaces, including the left- and

right-most parentheses. The independent variables are read line by line in

the same sequence as that which was used to calculate the coefficients.

C3 must be either SV15 or DONT. To store the values in unit 15, C3

should be SV15. This causes the values followed by the corresponding

independent variable(s) to be written to unit 15. If C3 is DONT then the

values are not written to unit 15.

C3+ is used only if C3 is SVl5. Then C3+ should have the format which is

to be used to write the calculated value(s) followed by the independent

variable(s) Into unit 15. This format may have at most 72 spaces Including

both the left- and right-most parentheses.
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TABLE 8.2

Input for EVALUATION

CARD POSSIBLE VALUES FORMAT

I (N',k) 215

2 Format to read C4+1,...,C4+N'. 18A4

3 SV15,DONT A4

3+ Format for 15 (Omit if C2 is DONT.) 18A4

4+1

* Independent variable points

* of evaluation, tT. (See C2)

* Format is provided in C2.

4+N'
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TABLE 8.3

Sample Runstreams Comments

@XQT SMOOTH*SPLINE.MAIN Implements the MAIN program.
SS13 Stores the spline coefficients in unit 13.
SM14 Stores matrices in unit 14.
DONT Doesn't store other values.
MGCV Minimize the GCVF to determine A*.
SAME The relative variances are all the same.

1 24 2 One dimension, 24 observations, m-2.
(F3.10,33X,F4.0) Format of the input data.
@ADD DATA. Inserts data from Table 3.1 in runstream.
YES Provide confidence intervals.

@XQT SMOOTH*SPLINE.EVALUATE Implements the EVALUATION program.
200 0 At 200 points evaluate the spline.

(36X,F8.4) Format of the independent variables.
SV15 Store the spline and independent variable

values In unit 15.
(2E15.8) Format of above.
@ADD PLOTDATA. Inserts abcissa points to be used for

plotting.

@XQT SMOOTH*SPLINE.MAIN Implements the MAIN program.
SS13 Stores the spline coefficients in unit 13.
UM14 Uses the matrices stored in 14 by MAIN

above.
DONT Doesn't store other values.
USEL Use the following value of X.

.00016E0 Value of A to be used.
(F3.O) Format of the dependent variables.

@ADD DATA. Inserts data from Table 3.1.
YES Provides confidence Intervals.

@XQT SMOOTH*SPLINE.EVALUATE Implements the evaluation program.
200 0 At 200 points evaluate the spline.

(36X,F8.4) Format of the independent variable.
SV15 Store the spline and Independent variable

in 15.
(2E15.8) Format of above.
@ADO PLOTOATA. Inserts abclssa points to be used for

plotting.
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C4+1 through C4+N' contain the independent variable(s) at which the

function Is to be evaluated. These should be in the format given on C2. The

independent variable(s) should be in the same sequence as used to obtain the

coefficients with the program MAIN.

The programs MAIN and EVALUATE are written in ASCII FORTRAN Level 9R1 and

are running on the UNIVAC 1100/80 computer at the University of Wisconsin.

All calculations are performed in double precision.

The subroutines used by the programs MAIN and EVALUATE are named:

AWRT14, BWRT14, CALC, CALD, CALRES, CHECKQ, COLOFK, CONINT, DATAR, DERIV1,

DERIV2, E, ED1, ED2, GETASI, GETBM, GETR, GETRDE, GETTHM, GRAPHV, MAKEB,

MAKETS, MINVL1, MINVL2, MQRDC, PRINT, PRNTLM, RCHECK, READ13, SPLINE, SVDB,

VARDF, VLHELP, VOFL, WHATDO, WRT13, AND WRT15. GRAPHV, MINVLI and MINVL2 are

modeled after similar subroutines of the one dimensional smoothing spline

program written by Fleisher (1979) and running at the Madison Academic

Computing Center (MACC). A description of the program structure is given in

Wendelberger (1981).

The following LINPACK subroutines are also used by the program MAIN:

DAXPY, OCOPY, DDOT, DNRM2, DQRDC, DQRSL, DROT, DROTG, DSCAL, DSVDC, DSWAP and

DTRSL. The code for these routines Is not included here. It may be found in

the LINPACK USERS' GUIDE by Dongarra, Bunch, Moler and Stewart (1979). One

modification is made in the LINPACK subroutine DSVOC: the parameter MAXIT is

increased from 30 to 60. This parameter sets the maximum number of iterations

to be performed In the algorithm to determine the singular values and vectors

of B before termination due to nonconvergence. Increasing MAXIT to 60 Is
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necessary because with large N, say N > 140, 30 iterations may not be large

enough for some problems. An example with N-150 failed because MAXIT-30 was

too small. However, with MAXIT-6O example 3 with N-300 was successfully run.

In fact MAXIT-60 has proved ample for all examples tried to date. The version

of the program described here uses the singular value decomposition to obtain

the spectral decomposition of B. A new modified version uses the EISPACK

(Smith, et al., (1976)) routines DTRED2 and DTQL2 to accomplish this task at a

much reduced cost and at no loss in accuracy. This is because the singular

value decomposition does not make use of the symmetry of B. The EISPACK

routines do make use of the symmetry of B and thus the cost of the

decomposition is roughly cut in half.I.
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